Deep Learning course with TensorFlow in Texas

Deep Learning course with TensorFlow from Sniffer Search provide fundamentals of Deep learning using Neural Network ,Reinforcement Learning and using TensorFlow Framework.

0 STUDENTS ENROLLED
    Deep Learning with TensorFlow course is best course to start for new comers to learn from basic to advance in machine learning and deep learning.

    The course is aimed to bring the best of  Deep learning training  in Texas.

    After Completion of the course ,you  will be able to solve:

    • Complex problem using neural network
    • Build artificial Intelligence (speech to text,NLP solution,Image recognition ,object detection )
    •  Deep  reinforcement algorithm  and Recommended System

     

    Google brain team build and implemented Deep neural network  inside  TensorFlow .In this course you will build expertise  on Deep Learning using Google TensorFlow after completion

    Why Sniffer Search: The Deep Learning with TensorFlow  from Sniffer Search training is provided by professional from Top Deep Learning enthusiastic from top product companies in Bangalore and United States

    During the training period we provide one to one mentorship so that you can learn at your own speed.

    Become a Deep Learning Engineer in Top Companies where you can utilize your skills on Deep learning using TensorFlow.

    Course Curriculum

    Introduction to Machine learning
    Supervised and Unsupervised learning algorithm 00:00:00
    Machine learning process
    Data Cleaning and Exploration 00:00:00
    Introduction Deep Learning
    Define Deep Learning Neural Networks Deep Learning Applications 00:00:00
    Deep learning type and indepth
    there are different type of deep learning 00:00:00
    Train a Deep neural Network
    Train your Network 00:00:00
    Hyper parameter tuning in Deep Neural Network
    Number of Hidden Layers and units 00:00:00
    Image Recognition and Detection using CNN model
    how to use Inception-v3. how to classify images into 1000 classes in Python or C++. We’ll also discuss how to extract higher level features from this model which may be reused for other vision tasks. 00:00:00
    Convolutional Neural Networks
    We will build a relatively small convolutional neural network (CNN) for recognizing images. 00:00:00
    Highlights a canonical organization for network architecture, training and evaluation. 00:00:00
    Provides a template for constructing larger and more sophisticated models. 00:00:00
    Recurrent Neural Networks
    we will show how to train a recurrent neural network on a challenging task of language modeling. The goal of the problem is to fit a probabilistic model which assigns probabilities to sentence 00:00:00
    Language Modelling. 00:00:00
    Neural Machine Translation
    Sequence-to-sequence (seq2seq) models (Sutskever et al., 2014, Cho et al., 2014) have enjoyed great success in a variety of tasks such as machine translation, speech recognition, and text summarization. This tutorial gives readers a full understanding of seq2seq models and shows how to build a competitive seq2seq model from scratch. We focus on the task of Neural Machine Translation (NMT) which was the very first testbed for seq2seq models with wild success. The included code is lightweight, high-quality, production-ready, and incorporated with the latest research ideas. We achieve this goal by: Using the recent decoder / attention wrapper API, TensorFlow 1.2 data iterator Incorporating our strong expertise in building recurrent and seq2seq models Providing tips and tricks for building the very best NMT models and replicating Google’s NMT (GNMT) system. 00:00:00
    Recurrent Neural Networks for Drawing Classification
    we’ll show how to build an RNN-based recognizer for this problem. The model will use a combination of convolutional layers, LSTM layers, and a softmax output layer to classify the drawings 00:00:00
    Simple Audio Recognition
    You will learn how to build a basic speech recognition network that recognizes ten different words. It’s important to know that real speech and audio recognition systems are much more complex, but like MNIST for images, it should give you a basic understanding of the techniques involved. Once you’ve completed this tutorial, you’ll have a model that tries to classify a one second audio clip as either silence, an unknown word, 00:00:00
    TensorFlow Linear Model
    In this tutorial, we will use the tf.estimator API in TensorFlow to solve a binary classification problem: Given census data about a person such as age, education, marital status, and occupation (the features), we will try to predict whether or not the person earns more than 50,000 dollars a year (the target label). We will train a logistic regression model, and given an individual’s information our model will output a number between 0 and 1, which can be interpreted as the probability that the individual has an annual income of over 50,000 dollars. 00:00:00
    TensorFlow Wide & Deep Learning
    The course will cover how to use the tf.estimator API to jointly train a wide linear model and a deep feed-forward neural network. This approach combines the strengths of memorization and generalization. It’s useful for generic large-scale regression and classification problems with sparse input features (e.g., categorical features with a large number of possible feature values). 00:00:00
    Vector Representations of Words
    we look at the word2vec model by Mikolov et al. This model is used for learning vector representations of words, called “word embeddings”. 00:00:00
    You will be learning substantive parts of building a word2vec model in TensorFlow. We start by giving the motivation for why we would want to represent words as vectors. We look at the intuition behind the model and how it is trained (with a splash of math for good measure). We also show a simple implementation of the model in TensorFlow. Finally, we look at ways to make the naive version scale better. 00:00:00
    Improving Linear Models Using Explicit Kernel Methods
    You will learn we demonstrate how combining (explicit) kernel methods with linear models can drastically increase the latters’ quality of predictions without significantly increasing training and inference times. Unlike dual kernel methods, explicit (primal) kernel methods scale well with the size of the training dataset both in terms of training/inference times and in terms of memory requirements 00:00:00

    Course Reviews

    N.A

    ratings
    • 5 stars0
    • 4 stars0
    • 3 stars0
    • 2 stars0
    • 1 stars0

    No Reviews found for this course.

    © Sniffer Search. All rights reserved.

    Setup Menus in Admin Panel

    deep-learning-course-with-tensorflow-in-texas-sniffer-search